Modularity maximization in networks by variable neighborhood search
نویسندگان
چکیده
Finding communities, or clusters, in networks, or graphs, has been the subject of intense studies in the last ten years. The most used criterion for that purpose, despite some recent criticism, is modularity maximization, proposed by Newman and Girvan. It consists in maximizing the sum for all clusters of the number of inner edges minus the expected number of inner edges assuming the same distribution of degrees. Numerous heuristics, as well as a few exact algorithms have been proposed to maximize modularity. We apply the Variable Neighborhood Search metaheuristic to that problem. The resulting Variable Neighborhood Decomposition Search heuristic is applied to the Clustering problems of the 10 DIMACS Implementation Challenge. The optimal solution is obtained by the heuristic whenever it is known, and otherwise the best solutions from the literature are improved, except in the case of three instances for which available memory was too small.
منابع مشابه
Community detection by modularity maximization using GRASP with path relinking
Detection of community structure in graphs remains up to this date a computationally challenging problem despite the efforts of many researchers from various scientific fields in the past few years. The modularity value of a set of vertex clusters in a graph is a widely used quality measure for community structure, and the relating problem of finding a partition of the vertices into clusters su...
متن کاملInvestigating Zone Pricing in a Location-Routing Problem Using a Variable Neighborhood Search Algorithm
In this paper, we assume a firm tries to determine the optimal price, vehicle route and location of the depot in each zone to maximise its profit. Therefore, in this paper zone pricing is studied which contributes to the literature of location-routing problems (LRP). Zone pricing is one of the most important pricing policies that are prevalently used by many companies. The proposed problem is v...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملWorkshop on Clustering and Search techniques in large scale networks Hierarchical network clustering by modularity maximization
Community detection based on modularity maximization is currently done with hierarchical as well as with partitioning heuristics, and, in a few papers, exact algorithms. Hierarchical heuristics aim at finding a set of nested partitions. They are in principle devised for finding a hierarchy of partitions implicit in the given network when it corresponds to some situation where hierarchy is obser...
متن کاملA Spectral Based Clustering Algorithm for Categorical Data with Maximum Modularity
In this paper we propose a spectral based clustering algorithm to maximize an extended Modularity measure for categorical data; first, we establish the connection with the Relational Analysis criterion. Second, the maximization of the extended modularity is shown as a trace maximization problem. A spectral based algorithm is then presented to search for the partitions maximizing the extended Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012